Direct Likelihood Approximations for Generalized Linear Mixed Models

Auf Lager.
  • Produktbeschreibung

    Direct Likelihood Approximations for Generalized Linear Mixed Models

    It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.
  • Zusatzinformation

    VDM Verlag Dr. Müller
    ISBN / EAN
  • Sie könnten auch an folgenden Produkten interessiert sein

    Art.Nr. 1028277

    Reiß:Praxisbuch IT-Dokumentation

    Art.Nr. 1479181

    Ramirez Molina:Diseño de una arquitectu

    Art.Nr. 1459513

    Seibert,J.:Anwend.v.Semantic-Web Techn.

  • 0 Kundenmeinungen

    Schreiben Sie selbst eine Rezension

    Ihre Meinung interessiert uns – und hilft anderen Kunden bei der Auswahl.